活在枫叶国

 找回密码
 立即注册
查看: 384|回复: 0

2024年诺贝尔物理学奖跟图灵奖“抢饭碗”?——机器学习获诺奖凸显跨学科研究的惊人

[复制链接]

4万

主题

8万

帖子

24万

积分

论坛元老

Rank: 13Rank: 13Rank: 13Rank: 13

积分
241022
发表于 2024-10-10 23:07:40 | 显示全部楼层 |阅读模式 来自: LAN
  新华社斯德哥尔摩10月8日电 科普|2024年诺贝尔物理学奖跟图灵奖“抢饭碗”?——机器学习获诺奖凸显跨学科研究的惊人力量) T  I( g/ a  O; i! k8 Y. G
  新华社记者郭爽
' E  p/ c+ X5 K# s" v7 u7 |  8日宣布的2024年诺贝尔物理学奖“意外”垂青机器学习,让多个诺奖预测集体“翻车”,就连获奖者之一的杰弗里·欣顿也坦言自己“完全没想到”。看似不属于传统物理学任何一个分支领域的成果斩获诺奖,让不少学者开玩笑说诺贝尔物理学奖在跟计算机界的图灵奖“抢饭碗”。
% z; _2 |: r: E5 f  事实上,机器学习领域的元老级人物约翰·霍普菲尔德和杰弗里·欣顿斩获诺奖,如诺奖官方公告所说正是因为“运用物理学的工具”。今年的诺贝尔物理学奖不仅是对两名科学家成就的肯定,更是极大强调了跨学科研究的重要性,向人们展示了物理学的深刻洞见与计算机科学创新“碰撞”可以产生的巨大能量。7 k) X) u! k: u/ G% i
  当前人们谈论人工智能时,经常指的是使用人工神经网络的机器学习。诺贝尔物理学委员会秘书乌尔夫·丹尼尔松对记者强调,人工神经网络在物理学中的研究和应用已经持续了相当长一段时间,本次诺贝尔物理学奖并非颁发给过去几年人工智能的发展,不是针对大语言模型或类似的东西,而是针对基础发明。
1 W  h' {6 u' T  远在人工智能成为今天的科技热词之前,这两名科学家从20世纪80年代起就在人工神经网络领域做出了重要工作。这项技术最初的灵感来自大脑的结构。就像大脑中大量神经元通过突触相连一样,人工神经网络由大量的“节点”通过“连接”组成。每个节点就像一个神经元,而连接的强弱则类似于突触的强度,决定了信息传递的效果。
) }; z# H* i: ~' u  W8 j, X) |  1982年,美国科学家约翰·霍普菲尔德创建了一种用于机器的联想记忆方法,提出了一种革命性的网络结构,被称为“霍普菲尔德网络”。这个网络能够存储多个模式(比如图像),并且在面对不完整或有噪声的输入时,能够重构出最相似的模式。/ J) ]- Y, o" I9 [! e3 r% G: N
  英国裔加拿大科学家杰弗里·欣顿在此基础上更进一步,他希望机器能像人类一样自主学习和分类信息,于1985年和同事提出了“玻尔兹曼机”的网络模型,这个名字源于19世纪物理学家路德维希·玻尔兹曼的方程。该模型通过统计物理学中的玻尔兹曼分布来识别数据中的特征,成为了现代深度学习网络的基础。欣顿的研究继续推进,导致了当前机器学习领域爆炸式的发展。& W8 }( Z- [( T* G/ f  @2 v5 M! t
  爱尔兰都柏林圣三一学院认知神经科学教授罗德里·丘萨克8日评论指出,人工神经网络最初受到神经科学的启发,并且两者之间的相互作用持续蓬勃发展。人工神经网络已被证明是大脑学习过程的宝贵模型,机器正在帮助我们了解自己,这反过来又为技术发展提供了新的途径。如果没有霍普菲尔德和欣顿的开创性工作,这一切都不可能实现。$ J# z9 o  [8 N0 i* A! K
  霍普菲尔德和欣顿的工作不仅推动了机器学习的发展,还对物理学产生了深远影响。正如丹尼尔松当天在接受新华社记者采访时所说,物理学的原理为两名科学家提供了思路,同时,人工神经网络在物理学中也得到了广泛应用,催生新的惊人发现。0 X! P3 \; o% H# b( q; `+ ^8 F# O
  诺贝尔物理学委员会主席埃伦·穆恩斯在当天的新闻发布会上表示,两名获奖者利用统计物理的基本概念设计了人工神经网络,构建了机器学习的基础。相关技术已被用于推动多个领域的研究,包括粒子物理、材料科学和天体物理等,也已用于日常生活中的人脸识别和语言翻译等。
# h, H+ K; m0 g  ?; E. `! \  A  机器学习的迅速发展不仅带来了巨大的机遇,也引发人们对于伦理和安全方面的担忧。穆恩斯当天在发布会上强调说,人类有责任以安全且道德的方式使用这项新技术,以确保它能为全人类带来最大的利益。
  R6 ?* Q7 X5 O* V& E2 {  欣顿当天在接受电话连线采访时表示,这一技术将对社会产生巨大影响,但也必须警惕这一技术可能造成的威胁。丹尼尔松也指出,机器学习与基因编辑等众多前沿技术的发展是“双刃剑”,人们必须警惕出现坏的结果。在这方面,尤其需要全球合作。
【郑重声明】活在枫叶国刊载此文不代表同意其说法或描述,仅为提供更多信息,也不构成任何投资或其他建议。转载需经本网同意并注明出处。本网站有部分文章是由网友自由上传,对于此类文章本站仅提供交流平台,不为其版权负责;部分内容经社区和论坛转载,原作者未知,如果您发现本网站上有侵犯您的知识产权的文章,请及时与我们联络,我们会及时删除或更新作者。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

手机版|小黑屋|活在枫叶国

GMT-5, 2024-11-7 17:06 , Processed in 0.015291 second(s), 33 queries .

Powered by 活在枫叶国

www.canadaasians.com

快速回复 返回顶部 返回列表